
Stephen Checkoway

Programming Abstractions
Week 9-1: Dynamic Bindings and Parameter Passing

(define f

 (let ([x 1]

 [y 2])

 (λ (z) (if z x y))))

What is the value of (f 10)?

A. This is a run-time error because

10 isn't a boolean

B. This is some other sort of error

C. 1

D. 2

E. None of the above

2

Dynamic binding vs.
lexical binding

Scope of a declaration

The scope of a declaration is the portion of the expression or program to which

that declaration applies

Lexical binding

‣ Scope of a variable is determined by textual layout of the program

‣ C, Java, Scheme/Racket use lexical binding

Dynamic binding

‣ Scope of a variable is determined by most recent runtime declaration

‣ Bash and classic Lisp use dynamic binding

What is the value of y in the body of (f 2)

(let ([y 3])

 (let ([f (λ (x) (+ x y))])

 (let ([y 17])

 (f 2))))

With lexical (also called static) binding: y is 3

‣ The value of y comes from the closest lexical binding of y, namely [y 3]

With dynamic binding: y is 17

‣ The value of y comes from the most-recent run-time binding of y, namely  

[y 17]

Lambdas in a lexically-scoped language

A lambda expression evaluates to a closure which is a triple containing

‣ the environment at the time the lambda is evaluated

‣ the parameters

‣ the body of the lambda

When we apply the closure to argument expressions

‣ we evaluate the arguments in the current environment

‣ extend the closure's environment with bindings of parameters to argument

values

‣ evaluate the closure's body in the new environment

Lexical binding example

(let ([y 3])

 (let ([f (λ (x) (+ x y))])

 (let ([y 17])

 (f 2))))

Lexical binding example

(let ([y 3])

 (let ([f (λ (x) (+ x y))])

 (let ([y 17])

 (f 2))))

Variable Value

y 3

Lexical binding example

(let ([y 3])

 (let ([f (λ (x) (+ x y))])

 (let ([y 17])

 (f 2))))

Variable Value

y 3

Variable Value

f closure

Lexical binding example

(let ([y 3])

 (let ([f (λ (x) (+ x y))])

 (let ([y 17])

 (f 2))))

Variable Value

y 3

Variable Value

f closure

Variable Value

y 17

Lexical binding example

(let ([y 3])

 (let ([f (λ (x) (+ x y))])

 (let ([y 17])

 (f 2))))

Variable Value

y 3

Variable Value

f closure

Variable Value

y 17

Variable Value

x 2

Lambdas in a dynamically-scoped language

A lambda expression evaluates to a procedure which is just a pair containing

‣ the parameters

‣ the body of the lambda

When we apply the procedure to argument expressions

‣ we evaluate the arguments in the current environment

‣ extend the current environment with bindings of parameters to argument

values

‣ evaluate the lambda's body in the new environment

Dynamic binding example

(let ([y 3])

 (let ([f (λ (x) (+ x y))])

 (let ([y 17])

 (f 2))))

Dynamic binding example

(let ([y 3])

 (let ([f (λ (x) (+ x y))])

 (let ([y 17])

 (f 2))))

Variable Value

y 3

Dynamic binding example

(let ([y 3])

 (let ([f (λ (x) (+ x y))])

 (let ([y 17])

 (f 2))))

Variable Value

y 3

Variable Value

f procedure

Dynamic binding example

(let ([y 3])

 (let ([f (λ (x) (+ x y))])

 (let ([y 17])

 (f 2))))

Variable Value

y 3

Variable Value

f procedure

Variable Value

y 17

Dynamic binding example

(let ([y 3])

 (let ([f (λ (x) (+ x y))])

 (let ([y 17])

 (f 2))))

Variable Value

y 3

Variable Value

f procedure

Variable Value

y 17

Variable Value

x 2

(let* ([x 10]

 [f (λ (x) (+ x x))])

 (f (- x 5)))

What is the value of this expression assuming lexical binding? What about

dynamic binding?

A. Lexical: 10 

Dynamic: 10

B. Lexical: 10 

Dynamic: 20

C. Lexical: 20 

Dynamic: 10

D. Lexical: 20 

Dynamic: 20

E. None of the above

10

(let* ([x 10]

 [f (λ (y) (+ x y))])

 (f (- x 5)))

What is the value of this expression assuming lexical binding? What about

dynamic binding?

A. Lexical: 15 

Dynamic: 15

B. Lexical: 15 

Dynamic: 10

C. Lexical: 10 

Dynamic: 15

D. Lexical: Error 

Dynamic: 10

E. None of the above

11

(define f

 (let ([z 100])

 (λ (x) (+ x z))))

(let ([z 10])

 (f 2))

What is the value of this let

expression assuming lexical

binding? What about dynamic

binding?

A. Lexical: 12 

Dynamic: 12

B. Lexical: 12 

Dynamic: 102

C. Lexical: 102  

Dynamic: 12

D. Lexical: 102  

Dynamic: 102

E. None of the above

12

Why was dynamic binding ever used?

It's easy to implement

‣ Dynamic binding was understood several years before static binding

It made sense to some people that (λ (x) (+ x y)) should use whatever

the latest version of y is

Why do we now use lexical binding?

Most languages are derived from Algol-60 which used lexical binding

Compilers can use lexical addresses known at compile time for all variable

references

Code from lexically-bound languages is easier to verify

‣ E.g., in Racket, we can ensure a variable is declared before it is used before

we run the program

‣ It makes more sense to most people

Python example

def fun(x):

 return lambda y: x + y

def main():

 f = fun(10)

 print(f(7)) # Prints 17

 x = 20

 print(f(7)) # Prints 17

main()

Bash example

 1 #!/bin/bash

 2

 3 x=0

 4

 5 setx() {

 6 x=$1

 7 }

 8

 9 printx() {

10 echo "${x}"

11 }

12

13 main() {

14 printx # prints 0

15 setx 10

16 printx # prints 10

17 local x=25

18 printx # prints 25!

19 setx 100

20 printx # prints 100!

21 }

22

23 main

24 printx # prints 10

Parameter-passing mechanisms

Three mechanisms

Pass by value

‣ Arguments are evaluated in the caller's environment

‣ Argument values are bound to parameters

Pass by reference

‣ Arguments must be variables

‣ Addresses of arguments are bound to the parameters

Pass by name

‣ Arguments are not evaluated

‣ The text of the arguments is passed to the function and replace the

parameters in the function's body

Aside: Mutation and sequencing

To see the difference between pass by value and pass by reference, we need to

be able to mutate (modify) variables

In Scheme, (set! var value)  

(let ([v 10])  
 (begin (displayln v) ; prints 10  
 (set! v 20)  
 (displayln v))) ; prints 20

(begin exp1 ... expn)

‣ Evaluates each expression and returns the value of the final one

‣ The other n-1 expressions are only useful for their side effects like printing or

modifying variables

‣ begin isn't actually needed here, let allows multi-expression bodies

Pass by value vs. by reference

(let ([v 0]

 [f (λ (x) (set! x 34))])

 (f v)

 v)

Pass by value

‣ When evaluating (f v), x is initially bound to 0

‣ The (set! x 34) sets the value of x to 34; v remains bound to 0

‣ The final v evaluates 0 and thus the whole expression evaluates to 0

Pass by reference

‣ When evaluating (f v), x and v refer to the same variable with value 0

‣ The (set! x 34) sets the value of that variable to 34

‣ The final v (and the whole expression) evaluates to 34

(define (f x y)

 (let ([z x])

 (set! x (* y 2))

 (set! y (* z 3))))

(let ([a 1] [b 2])

 (f a b)

 (list a b))

What is the value of the let expression assuming pass by value? What about

pass by reference?

A. Value: '(1 2)  

Reference: '(1 2)

B. Value: '(1 2)  

Reference: '(4 3)

C. Value: '(4 3)  

Reference '(1 2)

D. Value: '(1 2)  

Reference: '(4 12)

21

Pass by reference in Scheme (sort of)

We create a box which holds a value

The value of the box itself is the address of the variable and can be passed to

functions

The value inside the box can be mutated

(let ([v (box 0)]

 [f (λ (x) (set-box! x 34))])

 (f v)

 (unbox v)) ; Returns 34

Pass by value vs name
Pass by value

(let* ([v 0]

 [f (λ (x) ; Don't need begin in λ body

 (set! v (+ v 1))

 x)])

 (f (+ v 5)))

Pass by value

‣ f is called with value 5 so x is bound to 5

‣ v is set to 1

‣ x is returned

Pass by value vs name
Pass by name

(let* ([v 0]

 [f (λ (x) ; Don't need begin in λ body

 (set! v (+ v 1))

 x)])

 (f (+ v 5)))

Pass by name

‣ The text of f's body becomes the two expressions (by replacing x with the

text of the argument)  

(set! v (+ v 1))  
(+ v 5)

‣ v is set to 1 and then 6 is returned

Pass by name in Scheme: macros
(define-syntax-rule (name param1 ... paramn) body)

We can create macros where the arguments are substituted textually for the

parameters (we'll probably discuss this more later in the semester)

(let ([v 0])

 (define-syntax-rule (f x)

 (begin

 (set! v (+ v 1))

 x))

 (f (+ v 5)))

This isn't quite the same as pass by name because Scheme macros don't allow

free variables (here, v always refers to the v in the let expression)

Pass by x

Pass by value

‣ Easiest to understand and most common

‣ Used by Scheme, Java, C, Python, Bash, and most other languages

Pass by reference

‣ Allows modifying passed in variables which can be useful in languages that

don't support returning multiple values

‣ Supported by C++, C#, Rust, and others

Pass by name

‣ Least common mechanism and by far the most difficult to reason about

‣ Used by macro languages like TeX, m4, and C's preprocessor

‣ Macro constructs in languages like Scheme and Rust

Pass by name in TeX

TeX is a macro language for writing documents

1 \def\work#1#2{%

2 All work and no play makes #1 a dull #2.\par

3 }

4 \def\sad#1#2dull{%

5 #1 a sad%

6 }

7 \work{Jack}{boy}

8 \work{\sad{Steve}}{professor}

9 \bye

Pass by name in the C preprocessor

 1 #include <stdio.h>

 2

 3 #define swap(x, y) \

 4 int tmp = x; \

 5 x = y; \

 6 y = tmp

 7

 8 int main() {

 9 int arr[5] = {4, 4, 4, 4, 4};

10 int idx = 2;

11 swap(idx, arr[idx]);

12 printf("%d\n", idx);

13 printf("{%d, %d, %d, %d, %d}\n",

14 arr[0], arr[1], arr[2], arr[3], arr[4]);

15 return 0;

16 }

swap sets idx to 4 and then arr[4] to 2, arr[2] is unchanged!

Rust

 1 fn by_value(mut x: u32) {

 2 x += 1;

 3 }

 4

 5 fn by_ref(x: &mut u32) {

 6 *x += 1;

 7 }

 8

 9 fn main() {

10 let mut v = 0;

11

12 macro_rules! by_name {

13 ($x:stmt) => {

14 v += 1;

15 $x

16 }

17 }

18

19 by_value(v);

20 println!("{}", v);

21 by_ref(&mut v);

22 println!("{}", v);

23 by_name!(v += 5);

24 println!("{}", v);

25 }

Prints

0

1

7

Implementing pass by reference

MiniScheme implements pass-by-value (or will, once you implement lambdas in

the next homework)

We can make it pass-by reference by

‣ storing each value in a box;

‣ when calling functions, do not unbox the values, but pass the boxes as

normal;

‣ unbox when performing primitive procedures

Implementing pass by name

We can make MiniScheme pass by name via function re-writing

‣ Don't evaluate arguments at all

‣ In (apply-proc p args), rewrite the procedure's body (which is a parse

tree) replacing each use of a parameter with the parse tree for the

corresponding argument

